

Student number: 55741300

Name: Alejandro Arribus Surerz

Please write your name and student number on top of each sheet that you hand in

The following standard notation is used throughout: For any complex number w.

 $Im(\mathbf{w}) = Imaginary part of \mathbf{w}$, and $\overline{\mathbf{w}} = the conjugate of \mathbf{w}$.

You get 10 points for participating.

Good luck!

1. (15pts) Let f(z) be an entire function with $\operatorname{Im}(f(z)) \geq 2$ for all $z \in \mathbb{C}$. Prove that f is constant. Suggestion: Consider the function $g(z) = e^{if(z)}$.

2. (15 pts) Let C denote the circle |z|=3 oriented counterclockwise. Compute the integral

$$\int_C (\sin(z^2) + \overline{z}) \, dz.$$

3. (15 pts) Consider the polynomial $p(z)=iz^7+5z^5+1$. Use Rouché's theorem to prove that all zeros of p are contained in the annulus $\frac{1}{2}<|z|<3$.

4. (a) (10 pts) Determine the radius of convergence of the power series

$$h(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^n + 1}$$

(b) (10 pts) Let γ denote the unit circle |z|=1 oriented counter clockwise. Find

$$\int_{\gamma} \frac{h(z)}{z^3}.$$

5. (a) (10 pts) Let C_R denote the half circle $\{z: |z| = R, \operatorname{Im}(z) \geq k\}$. Prove that

$$\lim_{R\to\infty}\int_{C_R}\frac{z^2}{z^4+1}\,dz=0$$

(b) (15 pts) Using complex residues, compute the (real valued) integral

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} \, dx.$$